Additional Ventilators May Pose a Risk to Hospital Gas Supply Systems

Robert L. Chatburn, MHHS, RRT-NPS, FAARC Richard D. Branson, MSc, RRT, FAARC FCCM

COVID-19 Epidemic Concerns

- Increased usage of mechanical ventilators
 - Increased usage of current inventory
 - Rapid increase in new ventilator purchases
- The limiting factor may not be the number of ventilators but the medical gas supply to operate them

Facilities Design Concepts

- Medical oxygen is stored in liquid form
 - Limitations in flow due to plumbing resistance
 - Limitations in rate of usage due to icing on evaporation coils

Facilities Design Concepts

- Air is supplied by huge air compressors with dryers to remove water vapor
 - Failure of dryers will lead to water in piping system that can damage ventilators

Branson R, Hess D, Chatburn R. Resp Care Equipment 1995

Facilities Design Concepts

- No set design procedure of medical gas sizing
- Surge tolerances built into systems may not match actual surge due to increased ventilator usage
 - Oxygen usage by other delivery systems must be considered (O₂, masks, cannula, high flow systems)
- Clinicians need a way to communicate with engineers to determine gas flow capacity in each location were ventilators are or will be used

Medical Gas Calculator – Inputs

- Calculator built as an Excel file (download from AARC website)
- <u>https://www.aarc.org/additional-ventilators-</u> <u>may-pose-risk-to-hospital-gas-systems/</u>
- Runs on any computer that runs Microsoft Excel
- Simple numerical inputs from clinical planners

Medical Gas Calculator – Inputs

- Atmospheric temperature and pressure
- Ventilator minute ventilation
- FiO₂
 - Assumes ventilator does not have a blower
- Predicted peak ventilator census
- Estimated duration of ventilation

CRITICAL ASSUMPTIONS	High	Median	Low
Daily Ventilator Census (vents)	800	500	100
Duration of Ventilation (d)	14	12	10
Total vent-days	11,200	6,000	1,000
Capacity of Oxygen H-Tanks (L/tank)	7,080		
Capacity of Air H-Tanks (L/tank)	7,080		

- Outputs relevant to clinicians and engineers
 - Adjustable reporting units
 - Cubic meters (Liters) per minute
 - Cubic feet per hour
- Oxygen and Air Consumption Rate

– Per minute, hour, day

RESULTS for PIPING SYSTEMS (STPD)	High	Median	Low
Oxygen Consumption Rate (per min)	280	56	4
Oxygen Consumption Rate (per hr)	16,806	3,388	211
Oxygen Consumption Rate (per day)	403,335	81,305	5,052
Air Consumption Rate (per min)	0	58	11
Air Consumption Rate (per hour)	0	3,475	665
Air Consumption Rate (per day)	0	83,390	15,955

Medical Gas Calculator - Outputs

Total Gas Consumption Duration of Ventilation
– Oxygen and air tanks required if no piped oxygen

RESULTS for TANK SYSTEMS (STPD)	High	Median	Low
Required Oxygen H-Tanks per Day (tanks per day)	57	11	1
Required Oxygen H-Tanks per Population Duration of Ventilation (total tanks)	798	138	7

Required Air H-Tanks per Day (tanks per day)	0	12	2
Required Air H-Tanks per Population Duratoin of Ventilation (total tanks)	0	141	23

Practical Suggestions

- 1. Consider testing location gas capacity by placing running ventilators with test lungs
- 2. Turn off oxygen to manual resuscitators until used
- 3. Close zone valves to empty units
- 4. Use minimal FiO₂ for adequate oxygenation
- 5. Reduce use of high flow nasal cannula for oxygen delivery

Practical Equations

Oxygen use by ventilator
Add bias flow if present

 $O_2(L/min) = [tidal volume (L) \times respiratory rate (bpm] \times \frac{FiO_2 - 0.21}{0.79}$

 $O_2(L/min) = [tidal volume (L) \times respiratory rate (bpm] \times \frac{FiO_2 - 0.21}{0.79} + bias flow (lpm) \times \frac{FiO_2 - 0.21}{0.79}$

Take-Home Messages

- Accurate prediction of medical gas consumption during extreme surges requires a combination of both clinical and engineering information
- The limiting factor for COVID-19 ventilation surge may not be the available ventilators
- Medical oxygen and air supply systems may not be able to handle the increased usage

Take-Home Messages

- A calculator is available to make accurate estimates useful to engineers based on relevant ventilator usage data from clinical experience
- Other practical actions should be taken to assure adequate oxygen supplies