AARC Clinical Practice Guideline

Metabolic Measurement Using Indirect Calorimetry During Mechanical Ventilation—2004 Revision & Update

MMMV 1.0 PROCEDURE:

Metabolic measurements using indirect calorimetry for determination of oxygen consumption (\dot{V}_{O_2}), carbon dioxide production (\dot{V}_{CO_2}), respiratory quotient (RQ), and resting energy expenditure (REE) as an aid to patient nutritional assessment and management;¹⁻⁵ assessment of weaning success and outcome;⁶⁻⁸ assessment of the relationship between O₂ delivery (\dot{D}_{O_2}) and \dot{V}_{O_2} ;^{1,9,10} and assessment of the contribution of metabolism to ventilation.^{11,12} This guideline addresses metabolic measurement during mechanical ventilation.

MMMV 2.0 DESCRIPTION/DEFINITION:

Metabolic measurements use an indirect calorimeter to measure \dot{V}_{O_2} and \dot{V}_{CO_2} via expired gas analysis. The measurements of \dot{V}_{O_2} and \dot{V}_{CO_2} are used to calculate RQ ($\dot{V}_{CO_2}/\dot{V}_{O_2}$) and REE using the Weir equation:¹³

REE = $[\dot{V}_{O_2} (3.941) + \dot{V}_{CO_2} (1.11)]$ 1440 min/day.

The measurement of REE in mechanically ventilated neonatal, pediatric, and adult patients has been shown to be more accurate than published formulas used to predict REE,¹⁴⁻³⁸ to reduce the incidence of overfeeding and underfeeding,¹⁴⁻²⁸ and to decrease costs associated with total parenteral nutrition (TPN).²⁸ Measurement of REE and RQ has been shown to be helpful in designing nutritional regimens to reduce \dot{V}_{CO_2} in patients with chronic obstructive pulmonary disease (COPD) and patients requiring mechanical ventilation.^{15,39-44} Despite this evidence, studies demonstrating improved outcome, decreased time spent on the ventilator, or shorter ICU/hospital stay are lacking.

The objectives of metabolic measurements by indirect calorimetry are

2.1 To accurately determine the REE of mechanically ventilated patients to guide appropriate nutritional support¹⁴⁻³⁸

2.2 To accurately determine RQ to allow nutritional regimens to be tailored to patient needs¹⁴⁻⁴⁴
2.3 To accurately determine REE and RQ to monitor the adequacy and appropriateness of current nutritional support¹⁴⁻⁴⁴

2.4 To allow determination of substrate utilization when urinary nitrogen values are concomitantly measured⁴⁵⁻⁴⁷

2.5 To determine the O_2 cost of breathing as a guide to the selection of ventilator mode, settings, and weaning strategies⁶⁻⁸

2.6 To monitor the \dot{V}_{O_2} as a guide to targeting adequate $\dot{D}_{O_2}{}^1$

2.7 To assess the contribution of metabolism to ventilation^{11,12}

MMMV 3.0 SETTING:

3.1 Mechanically ventilated patients

3.1.1 In the hospital

3.1.2 In the extended care facility

MMMV 4.0 INDICATIONS:

Metabolic measurements may be indicated

4.1 In patients with known nutritional deficits or derangements.¹⁴⁻³⁸ Multiple nutritional risk and stress factors that may considerably skew prediction by Harris-Benedict equation include

4.1.1 Neurologic trauma^{20-27,35}

4.1.2 Paralysis²⁷

4.1.3 COPD^{15,23,26,44}

4.1.4 Acute pancreatitis^{18,36}

4.1.5 Cancer with residual tumor burden¹⁶

4.1.6 Multiple trauma^{22,25,28,37,38}

4.1.7 Amputations²⁵

4.1.8 Patients in whom height and weight cannot be accurately obtained

4.1.9 Patients who fail to respond adequately to estimated nutritional needs²¹

4.1.10 Patients who require long-term acute care⁴⁸

4.1.11 Severe sepsis^{18,34}

4.1.12 Extremely obese patients⁴⁹

4.1.13 Severely hypermetabolic or hypometabolic patients

4.2 When patients fail attempts at liberation from mechanical ventilation to measure the O_2 cost of breathing and the components of ventilation^{6-8,50}

4.3 When the need exists to assess the \dot{V}_{O_2} in order to evaluate the hemodynamic support of mechanically ventilated patients^{1,9,10}

4.4 To measure cardiac output by the Fick method^{51,52}

4.5 To determine the cause(s) of increased ventilatory requirements^{11,12,53}

MMMV 5.0 CONTRAINDICATIONS:

When a specific indication is present, there are no contraindications to performing a metabolic measurement using indirect calorimetry unless short-term disconnection of ventilatory support for connection of measurement lines results in hypoxemia, bradycardia, or other adverse effects.^{54,55}

MMMV 6.0 HAZARDS/COMPLICATIONS:

Performing metabolic measurements using an indirect calorimeter is a safe, noninvasive procedure with few hazards or complications. Under certain circumstances and with particular equipment the following hazards/complications may be seen.

6.1 Closed circuit calorimeters may cause a reduction in alveolar ventilation due to increased compressible volume of the breathing circuit.^{5,56-58}

6.2 Closed circuit calorimeters may decrease the trigger sensitivity of the ventilator and result in increased patient work of breathing.^{5,56-58}
6.3 Short-term disconnection of the patient from the ventilator for connection of the indirect calorimetry apparatus may result in hypoxemia, bradycardia, and patient discomfort.^{54,55}

6.4 Inappropriate calibration or system setup may result in erroneous results causing incorrect patient management.^{1,4,5}

6.5 Isolation valves may increase circuit resistance and cause increased work of breathing and/or dynamic hyperinflation.

6.6 Inspiratory reservoirs may cause a reduction in alveolar ventilation due to increased compressible volume of the breathing circuit.⁵⁹

6.7 Manipulation of the ventilator circuit may cause leaks that may lower alveolar ventilation.

MMMV 7.0 LIMITATIONS OF PROCEDURE:

Limitations of the procedure include

7.1 Accurate assessment of REE and RQ may not be possible⁶⁰⁻⁶³ because of patient condition or certain bedside procedures or activities.

7.2 Inaccurate measurement of REE and RQ may be caused by leaks of gas from the patient/ ventilator system preventing collection of expired gases including

7.2.1 Leaks in the ventilator circuit^{1,4,5}

7.2.2 Leaks around tracheal tube cuffs or uncuffed tubes^{1,4,5}

7.2.3 Leaks through chest tubes or bronchopleural fistula⁶⁴

7.3 Inaccurate measurement of REE and RQ occurs during peritoneal and hemodialysis due to removal across the membrane of CO_2 that is not measured by the indirect calorimeter^{1,4,5,17}

7.4 Inaccurate measurement of REE and RQ during open circuit measurement may be caused by

7.4.1 Instability of delivered oxygen concentration (F_{IO_2}) within a breath or breath to breath due to changes in source gas pressure and ventilator blender/mixing characteristics^{65,66}

7.4.2 $F_{IO_2} > 0.60^{1,4,5,65,66}$

7.4.3 Inability to separate inspired and expired gases due to bias flow from flow-triggering systems, IMV systems, or specific ventilator characteristics^{1,4,5,67,68}

7.4.4 The presence of anesthetic gases or gases other than O_2 , CO_2 , and nitrogen in the ventilation system⁶⁶

7.4.5 The presence of water vapor resulting in sensor malfunction

7.4.6 Inappropriate calibration⁶⁹

7.4.7 Connection of the indirect calorimeter to certain ventilators, with adverse effect on triggering mechanism, increased expiratory resistance, pressure measurement, or maintenance of the ventilator⁵

7.4.8 Total circuit flow exceeding internal gas flow of indirect calorimeter that incorporates the dilutional principle⁷⁰

7.4.9 Internal leaks within the calorimeter⁷¹

7.4.10 Inadequate length of measurement $^{72-75}$

7.5 Inaccurate measurement of REE and RQ during closed circuit measurement may be caused by

7.5.1 Short duration of the measurement period (a function of CO_2 absorber life and \dot{V}_{CO_2}) that may not allow REE state to be achieved^{5,56-58}

7.5.2 Changes in functional residual capacity (FRC) resulting in changes in spirometer volume unassociated with $\dot{V}_{O_2}^{5,56-58}$

7.5.3 Leaks drawing gas into the system during spontaneous breathing measurements that adds volume to the system and cause erroneously low \dot{V}_{O2} readings^{5,56-58}

7.5.4 Increased compressible volume in the circuit that prevents adequate tidal volume delivery resulting in alveolar hypoventilation and changes in $\dot{V}_{CO_2}/\dot{V}_{O_2}^{5.56-58}$

7.5.5 Increased compressible volume and resistance that results in difficulty triggering the ventilator and increased work of breathing^{5,56-58}

MMMV 8.0 ASSESSMENT OF NEED:

Metabolic measurements should be performed only on the order of a physician after review of indications (MMMV 4.0) and objectives.

MMMV 9.0 ASSESSMENT OF TEST QUALI-TY AND OUTCOME:

9.1 Test quality can be evaluated by determining whether

9.1.1 RQ is consistent with the patient's nutritional intake¹⁻⁵

9.1.2 RQ rests in the normal physiologic range $(0.67 \text{ to } 1.3)^{1-5}$

9.1.3 Variability of the measurements for \dot{V}_{O_2} and \dot{V}_{CO_2} should be $\leq 5\%$ for a 5-minute data collecton⁷²⁻⁷⁵

9.1.4 The measurement is of sufficient length to account for variability in \dot{V}_{O_2} and \dot{V}_{CO_2} if the conditions in 9.1.3 are not met⁷²⁻⁷⁵

9.2 Outcome may be assessed by comparing the measurement results with the patient's condition and nutritional intake.

9.3 Outcome may be assessed by observation of the patient prior to and during the measurement to determine if the patient is at steady state.

MMMV 10.0 RESOURCES:

10.1 Indirect calorimeter, open- or closed-circuit design

10.1.1 The calibration gas mixture should be relevant to the concentration of gas to be measured clinically.¹⁻⁵

10.1.2 The indirect calorimeter should be calibrated on the day of measurement and more often if errors in measurement are suspected.¹⁻⁵

10.1.3 When the measurement results are suspect and/or when repeated calibration attempts are marked by instability, the indirect calorimeter may be tested via an independent test method (burning ethanol or other substance with a known RQ or adding known flows of CO₂ and nitrogen to simulate \dot{V}_{O_2} and \dot{V}_{CO_2}).⁷⁶⁻⁷⁹ As a simple test, ventilation of a leak-free system should yield \dot{V}_{O_2} and \dot{V}_{CO_2} values of near 0. Routinely scheduled measurement of normal control subjects (volunteers) may be useful.

10.2 A method of stabilizing F_{IO_2} during opencircuit measurements should be available and may include

10.2.1 An air-oxygen blender connected between the gas source and the ventilator inlets for high pressure gas^{65}

10.2.2 An inspiratory mixing chamber between the ventilator main flow circuit and the humidifier (See MMMV 6.6)⁵⁹

10.2.3 Ventilator changes, which may include mode, inspiratory flow rate, PEEP, or tidal volume to improve patient-ventilator synchrony⁵³

10.3 An isolation valve, double-piloted exhalation valve, or other device to separate inspiratory and expiratory flow should be incorporated when using continuous flow in the ventilator circuit.⁶⁷ (see MMMV 6.5)

10.4 Personnel: Due to the level of technical and patient assessment skills required, metabolic measurements using indirect calorimeters should be performed by individuals trained in and with the demonstrated and documented ability to

10.4.1 Calibrate, operate, and maintain an indirect calorimeter

10.4.2 Operate a mechanical ventilator, including knowledge of the air-oxygen blending system, the spontaneous breathing mechanisms, and the alarm and monitoring functions

10.4.3 Recognize metabolic measurement values within the normal physiologic range and evaluate the results in light of the patient's current nutritional and clinical status

10.4.4 Assess patient hemodynamic and ventilatory status and make recommendations on appropriate corrective/therapeutic maneuvers to improve or reverse the patient's clinical course. A relevant credential (eg, RRT, CRT, RN, or RPFT) is desirable.

10.5 A hood canopy system in combination with airway sampling may be employed to capture gas that leaks around an uncuffed endotracheal tube.⁸⁰

10.6 If a stable F_{IO_2} cannot be achieved, \dot{V}_{CO_2} may be used to estimate REE by assuming an RQ of 0.83⁸¹ and the largest expected error is an

10.6.1 Underestimation of 25% for RQ of 1.2

10.6.2 Overestimation of 19% for RQ of 0.67

10.7 A simultaneous measure of P_{aCO_2} and \dot{V}_{CO_2} will allow calculation of pulmonary dead space and components of ventilation using the Bohr equation:⁸²

 $V_E = \dot{V}_{CO_2} \times 0.863 P_{aCO_2} \times (1 - V_D/V_T)$

MMMV 11.0 MONITORING:

11.1 The following should be evaluated during the performance of a metabolic measurement to ascertain the validity of the results

11.1.1 Clinical observation of the resting state (See MMMV 9.3)

11.1.2 Patient comfort and movement during testing

11.1.3 Values in concert with the clinical situation

11.1.4 Equipment function

11.1.5 Results within the specifications listed in 9.1.3 or 9.1.4

11.1.6 FIO2 stability

11.2 Measurement data should include a statement of test quality and list the current nutritional support, ventilator settings, F_{IO_2} stability, and vital signs.

MMMV 12.0 FREQUENCY:

12.1 Metabolic measurements should be repeated according to the clinical status of the patient and indications for performing the test. The literature suggests that more frequent measurement may be necessary in patients with a rapidly changing clinical course as recognized by

12.1.1 Hemodynamic instability⁶⁰

12.1.2 Spiking fevers⁶⁰

12.2 Patients in the immediate postoperative period and those being weaned from mechanical ventilation may also need more frequent measurement.⁶⁰

MMMV 13.0 INFECTION CONTROL:

Metabolic measurements using indirect calorimetry are relatively safe procedures, but a remote possibility of cross-contamination exists either via patient-patient or patient-caregiver interface. The following guidelines should be followed when a metabolic measurement is performed.

13.1 Standard Precautions should be exercised whenever there is potential for contamination with blood or other body fluids.⁸³

13.2 Appropriate use of barriers and handwashing is recommended.^{83,84}

13.3 Tubing used to direct expiratory gas from the ventilator to the indirect calorimeter should be disposed of or cleaned between patients.

13.4 Connections used in the inspiratory limb of the circuit proximal to the humidifier should be wiped clean between patients; equipment distal to the humidifier should be disposed of or subjected to high-level disinfection between patients.
13.5 Bacteria filters may be used to protect equipment in both the inspired and expired lines, but caution should be used that moisture does not increase filter resistance resulting in poor gas sampling flow or increased resistance to exhalation.

Revised by Charles D McArthur RRT RPFT, Immanuel St Joseph's — Mayo Health System, Mankato, Minnesota, and approved by the 2003 CPG Steering Committee Original Publication: Respir Care 1994;39(12):1170-1175.

REFERENCES

- 1. Weissman C. Measuring oxygen uptake in the clinical setting. In: Bryan-Brown CW, Ayres SM, editors. Oxygen transport and utilization. Fullerton CA: Society of Critical Care Medicine; 1987:25-64.
- Elia M, Livesey G. Theory and validity of indirect calorimetry during net lipid synthesis. Am J Clin Nutr 1988;47(4):591-607.
- Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism 1988;37(3):287-301.
- Kemper MA. Indirect calorimetry equipment and practical considerations of measurement. In: Weissman C, editor. Problems in respiratory care: nutrition and respiratory disease. Philadelphia: JB Lippincott: 1989;2:479-490.
- Branson RD. The measurement of energy expenditure: instrumentation, practical considerations, and clinical application. Respir Care 1990;35(7):640-656; discussion 656-659.
- McDonald NJ, Lavelle P, Gallacher WN, Harpin RP. Use of the oxygen cost of breathing as an index of weaning ability from mechanical ventilation. Intensive Care Med 1988;14(1):50-54.
- Lewis WD, Chwals W, Benotti PN, Lakshman K, O'Donnell C, Blackburn GL, Bistrian. Bedside assessment of the work of breathing. Crit Care Med 1988;16(2):117-122.
- Shikora SA, Bistrian BR, Borlase BC, Blackburn GL, Stone MD, Benotti PN. Work of breathing: reliable predictor of weaning and extubation. Crit Care Med 1990;18(2):157-162.
- Danek SJ, Lynch JP, Weg JG, Dantzker DR. The dependence of oxygen uptake on oxygen delivery in the adult respiratory distress syndrome. Am Rev Respir Dis 1980;122(3):387-395.
- Kaufman BS, Rackow EC, Falk JL. The relationship between oxygen delivery and consumption during fluid resuscitation of hypovolemic and septic shock. Chest 1984;85(3):336-340.
- Kiiski R, Takala J, Eissa NT. Measurement of alveolar ventilation and changes in deadspace by indirect calorimetry during mechanical ventilation: a laboratory and clinical validation. Crit Care Med 1991;19(10):1303-1309.
- Ravenscraft SA, McArthur CD, Path MJ, Iber C. Components of excess ventilation in patients initiated on mechanical ventilation. Crit Care Med 1991;19(7):916-925.
- deV Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 1949;109:1-9.
- Daly JM, Heymsfield SB, Head CA, Harvey LP, Nixon DW, Katzeff H, Grossman GD. Human energy requirements: overestimation by widely used prediction equation. Am J Clin Nutr 1985;42(6):1170-1174.

- Wilson DO, Rogers RM, Openbrier D. Nutritional aspects of chronic obstructive pulmonary disease. Clin Chest Med 1986;7(4):643-656.
- Nixon DW, Kutner M, Heymsfield S, Foltz AT, Carty C, Seitz S, et al. Resting energy expenditure in lung and colon cancer. Metabolism 1988;37(11):1059-1064.
- Blumberg A, Keller G. Oxygen consumption during maintenance hemodialysis. Nephron 1979;23(6):276-281.
- Long CL. Energy balance and carbohydrate metabolism in infection and sepsis. Am J Clin Nutr 1977;30(8):1301-1310.
- Curreri PW, Richmond D, Marvin J, Baxter CR. Dietary requirements of patients with major burns. J Am Diet Assoc 1974;65(4):415-417.
- 20. Clifton GL, Robertson CS, Grossman RG, Hodge S, Foltz R, Garza C. The metabolic response to severe head injury. J Neurosurg 1984;60(4):687-696.
- 21. Mullen JL. Consequences of malnutrition in the surgical patient. Surg Clin North Am 1981;61(3):465-487.
- Weissman C, Kemper M, Askanazi J, Hyman AI, Kinney JM. Resting metabolic rate of the critically ill patient: measured versus predicted. Anesthesiology 1986; 64(6):673-679.
- Branson RD, Hurst JM, Warner BW, Bower RH, Arita A. Measured versus predicted energy expenditure in mechanically ventilated patients with chronic obstructive pulmonary disease. Respir Care 1987;32(9):748-752.
- 24. Schane J, Goede M, Silverstein P. Comparison of energy expenditure measurement techniques in severely burned patients. J Burn Care Rehabil 1987;8(5):366-370.
- Hunter DC, Jaksic T, Lewis D, Benotti PN, Blackburn GL, Bistrian BR. Resting energy expenditure in the critically ill: estimations versus measurement. Br J Surg 1988;75(9):875-878.
- Moore JA, Angelillo VA. Equations for the prediction of resting energy expenditure in chronic obstructive lung disease. Chest 1988;94(6):1260-1263.
- Clifton GL, Robertson CS, Choi SC. Assessment of nutritional requirements of head-injured patients. J Neurosurg 1986;64(6):895-901.
- Foster GD, Knox LS, Dempsey DT, Mullen JL. Caloric requirements in total parenteral nutrition. J Am Coll Nutr 1987;6(3):231-253.
- 29. Samiec TD, Radmacher P, Hill T, Adamkin DH. Measured energy expenditure in mechanically ventilated very low birth weight infants. Am J Med Sci 1994;307(3):182-184.
- 30. Joosten KF, Verhoeven JJ, Hazelzet JA. Energy expenditure and substrate utilization in mechanically ventilated children. Nutrition 1999;15(6):444-448.
- 31. Coss-Bu JA, Jefferson LS, Walding D, David Y, Smith EO, Klish WJ. Resting energy expenditure in children in a pediatric intensive care unit: comparison of Harris-Benedict and Talbot predictions with indirect calorimetry values. Am J Clin Nutr 1998;67(1):74-80.
- Dickerson RN, Gervasio JM, Riley ML, Murrell JE, Hickerson WL, Kudsk KA, Brown RO. Accuracy of predictive methods to estimate resting energy expendi-

ture of thermally-injured patients. JPEN J Parenter Enteral Nutr 2002;26(1):17-29.

- 33. Goran MI, Broemeling L, Herndon DN, Peters EJ, Wolfe RR. Estimating energy requirements in burned children: a new approach derived from measurements of resting energy expenditure. Am J Clin Nutr 1991;54(1):35-40.
- 34. Moriyama S, Okamoto K, Tabira Y, Kikuta K, Kukita I, Hamaguchi M, Kitamura N. Evaluation of oxygen consumption and resting energy expenditure in critically ill patients with systemic inflammatory response syndrome. Crit Care Med 1999;27(10):2133-2136.
- Raurich JM, Ibanez J. Metabolic rate in severe head trauma. JPEN J Parenter Enteral Nutr 1994;18(6):521-524.
- Bouffard YH, Delafosse BX, Annat GJ, Viale JP, Bertrand OM, Motin JP. Energy expenditure during severe acute pancreatitis. JPEN J Parenter Enteral Nutr 1989;13(1):26-29.
- Boulanger BR, Nayman R, McLean RF, Phillips E, Rizoli SB. What are the clinical determinants of early energy expenditure in critically injured adults? J Trauma 1994;37(6):969-974.
- Brandi LS, Santini L, Bertolini R, Malacarne P, Casagli S, Baraglia AM. Energy expenditure and severity of injury and illness indices in multiple trauma patients. Crit Care Med 1999;27(12):2684-2689.
- Askanazi J, Nordenstrom J, Rosenbaum SH, Elwyn DH, Hyman AI, Carpentier YA, Kinney JM. Nutrition for the patient with respiratory failure: glucose vs fat. Anesthesiology 1981;54(5):373-377.
- 40. Mohsenin V, Ferranti R, Loke JS. Nutrition for the respiratory insufficient patient. Eur Respir J Suppl 1989;7:663S-665S.
- Askanazi J, Rosenbaum SH, Hyman AI, Silverberg PA, Milic-Emili J, Kinney JM. Respiratory changes induced by the large glucose loads of total parenteral nutrition. JAMA 1980;243(14):1444-1447.
- 42. Covelli HD, Balck JW, Olsen MS, Beekman JF. Respiratory failure precipitated by high carbohydrate loads. Ann Intern Med 1981;95(5):579-581.
- Dark DS, Pingleton SK, Kerby GR. Hypercapnia during weaning: a complication of nutritional support. Chest 1985;88(1):141-143.
- 44. Angelillo VA, Bedi S, Durfee D, Dahl J, Patterson AJ, O'Donohue WJ Jr. Effects of low and high carbohydrate feedings in ambulatory patients with chronic obstructive pulmonary disease and chronic hypercapnia. Ann Intern Med 1985;103(6 Pt 1):883-885.
- 45. Livesey G, Elia M. Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. Am J Clin Nutr 1988;47(4):608-628. Erratum in: Am J Clin Nutr 1989;50(6):1475.
- Brandi LS, Bertolini R, Calafa M. Indirect calorimetry in critically ill patients: clinical applications and practical advice. Nutrition 1997;13(4):349-358.
- 47. Bursztein S, Saphar S, Singer P, Elwyn DH. A mathe-

matical analysis of indirect calorimetry measurements in acutely ill patients. Am J Clin Nutr 1989;50(2):227-230.

- McClave SA, Lowen CC, Kleber MJ, Nicholson JF, Jimmerson SC, McConnell JW, Jung LY. Are patients fed appropriately according to their caloric requirements? JPEN J Parenter Enteral Nutr 1998;22(6):375-381.
- 49. Amato P, Keating KP, Quercia RA, Karbonic J. Formulaic methods of estimating calorie requirements in mechanically ventilated obese patients: a reappraisal. Nutr Clin Pract 1995;10(6):229-232.
- Mitsuoka M, Kinninger KH, Johnson FW, Burns DM. Utility of measurements of oxygen cost of breathing in predicting success or failure in trials of reduced mechanical ventilatory support. Respir Care 2001;46(9):902-910.
- 51. Takala J, Keinanen O, Vaisanen P, Kari A. Measurement of gas exchange in intensive care: laboratory and clinical validation of a new device. Crit Care Med 1989;17(10):1041-1047.
- 52. Feustel PJ, Perkins RJ, Oppenlander JE, Stratton HH, Cohen IL. Feasibility of continuous oxygen delivery and cardiac output measurement by application of the Fick principle. Am J Respir Crit Care Med 1994;149(3 Pt 1):751-758.
- McArthur C. Indirect calorimetry. Respir Care Clin N Am 1997;3(2):291-307.
- 54. De Campo T, Civetta JM. The effect of short-term discontinuation of high-level PEEP in patients with acute respiratory failure. Crit Care Med 1979;7(2):47-49.
- 55. Craig KC, Benson MS, Pierson DJ. Prevention of arterial oxygen desaturation during closed-airway endotracheal suction: effect of ventilator mode. Respir Care 1984;29(10):1013-1018.
- 56. Raurich JM, Ibanez J, Marse P. Validation of a new closed circuit indirect calorimetry method compared with the open Douglas bag method. Intensive Care Med 1989;15(4):274-278.
- Branson RD, Hurst JM, Davis K Jr, Pulsfort R. A laboratory evaluation of the Biergy VVR calorimeter. Respir Care 1988;33(5):341-347.
- Keppler T, Dechert RE, Arnoldi DK, Filius R, Bartlett RH. Evaluations of the Waters MRM-6000 and Biergy VVR closed-circuit indirect calorimeters. Respir Care 1989;34(1):28-35.
- Dickerson RN, Murrell JE, Brown RO, Kudsk KA, Leeper KV Jr. A simple technique to reduce ventilatordependent errors in oxygen consumption measurements. Nutrition 1995;11(2):145-148.
- 60. Weissman C, Kemper M, Hyman AI. Variation in the resting metabolic rate of mechanically ventilated critically ill patients. Anesth Analg 1989;68(4):457-461.
- 61. Weissman C, Kemper MC, Damask M, Askanazi J, Hyman AI, Kinney JM. Effect of routine intensive care interactions on metabolic rate. Chest 1984;86(6):815-818.
- 62. Feenstra BWA, van Lanschot JJB, Vermeij CG, Bruining HA. Artifacts in the assessment of metabolic gas exchange. Intensive Care Med 1986;12(4):312-316.

- Brandi LS, Bertolini R, Santini L, Cavani S. Effects of ventilator resetting on indirect calorimetry measurement in the critically ill surgical patient. Crit Care Med 1999;27(3):531-539.
- 64. Bishop MJ, Benson MS, Pierson DJ. Carbon dioxide excretion via bronchopleural fistulas in adult respiratory distress syndrome. Chest 1987;91(3):400-402.
- 65. Browning JA, Linberg SE, Turney SZ, Chodoff P. The effects of a fluctuating F_{IO_2} on metabolic measurements in mechanically ventilated patients. Crit Care Med 1982;10(2):82-85.
- Ultman JS, Bursztein S. Analysis of error in the determination of respiratory gas exchange at varying F_{IO2}. J Appl Physiol 1981;50(1):210-216.
- Head CA, Grossman GD, Jordan JC, Heppler EL, Heymsfield SB. A valve system for the accurate measurement of energy expenditure in mechanically ventilated patients. Respir Care 1985;30(11):969-973.
- 68. Nelson LD, Anderson HB, Garcia H. Clinical validation of a new metabolic monitor suitable for use in critically ill patients. Crit Care Med 1987;15(10):951-957.
- 69. Norton AC. Accuracy in pulmonary measurement. Respir Care 1979;24(2):131-137.
- Rasanen J. Continuous breathing circuit flow and tracheal tube cuff leak: sources of error during pediatric indirect calorimetry. Crit Care Med 1992;20(9):1335-1340.
- Bracco D, Chiolero R, Pasche O, Revelly JP. Failure in measuring gas exchange in the ICU. Chest 1995;107(5):1406-1410.
- Cunningham KF, Aeberhardt LE, Wiggs BR, Phang PT. Appropriate interpretation of indirect calorimetry for determining energy expenditure of patients in intensive care units. Am J Surg 1994;167(5):547-549.
- 73. Smyrnios NA, Curley FJ, Shaker KG. Accuracy of 30minute indirect calorimetry studies in predicting 24-hour energy expenditure in mechanically ventilated, critically ill patients. JPEN J Parenter Enteral Nutr 1997;21(3):168-174.
- 74. Petros S, Engelmann L. Validity of an abbreviated indirect calorimetry protocol for measurement of resting energy expenditure in mechanically ventilated and sponta-

neously breathing critically ill patients. Intensive Care Med 2001;27(7):1164-1168.

- Frankenfield DC, Sarson GY, Blosser SA, Cooney RN, Smith JS. Validation of a 5-minute steady state indirect calorimetry protocol for resting energy expenditure in critically ill patients. J Am Coll Nutr 1996;15(4):397-402.
- Damask MC, Weissman C, Askanazi J, Hyman AI, Rosenbaum SH, Kinney JM. A systematic method for validation of gas exchange measurements. Anesthesiology 1982;57(3):213-218.
- Nunn JF, Makita K, Royston B. Validation of oxygen consumption measurements during artificial ventilation. J Appl Physiol 1989;67(5):2129-2134.
- Makita K, Nunn JF, Royston B. Evaluation of metabolic measuring instruments for use in critically ill patients. Crit Care Med 1990;18(6):638-644.
- Takala J, Keinanen O, Vaisanen P, Kari A. Measurement of gas exchange in intensive care: laboratory and clinical validation of a new device. Crit Care Med 1989;17(10):1041-1047.
- Selby AM, McCauley JC, Schell DN, O'Connell A, Gillis J, Gaskin KJ. Indirect calorimetry in mechanically ventilated children: a new technique that overcomes the problem of endotracheal tube leak. Crit Care Med 1995;23(2):365-370.
- Sherman MS. A predictive equation for determination of resting energy expenditure in mechanically ventilated patients. Chest 1994;105(2):544-549.
- Bohr C. Ueber die Lungenathmung. Skand Arch Physiol 1889;2:236-268.
- Bolyard EA, Tablan OC, Williams WW, Pearson ML, Shapiro CN, Deitchmann SD. Guideline for infection control in healthcare personnel, 1998. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol 1998;19(6):407-463. Erratum in: Infect Control Hosp Epidemiol 1998;19(7):493.
- Guidelines for preventing the transmission of *Mycobacterium* tuberculosis in health-care facilities, 1994. Centers for Disease Control and Prevention. MMWR Recomm Rep 1994;43(RR-13):1-132.

Interested persons may photocopy these Guidelines for noncommercial purposes of scientific or educational advancement. Please credit AARC and RESPIRATORY CARE Journal. All of the AARC CPGs may be downloaded at no charge from http://www.rcjournal.com/online/